Coastal dune vegetation has been proved to contribute to several crucial ecosystem services, as coastal protection, water purification, recreation; conversely, its capacity to regulate the concentration of greenhouse gases received less attention. To fill this gap, the present work focalized on the assessment of the contribution of coastal dune herbaceous vegetation to carbon storage and carbon sequestration rate, also in relation to possible effects of disturbance. To this aim, we measured the dry biomass and carbon sequestration rate in three different vegetation types (foredune, dry grasslands, humid grasslands), and habitat patch attributes as proxies of the disturbance regime. Relationships between disturbance, and carbon storage and sequestration rate have been analysed by GLMMs. The target vegetation types did not equally contribute to the medium-long term sequestration of carbon with a gradient that increased from the seashore inlands and related to both the growth form and the strategy of resource acquisition of dominant species, and plant community attributes. Disturbance in the form of trampling negatively affected carbon sequestration rate. Results suggest that, when different plant communities are spatially interconnected, the landscape scale results in a better understanding of ecosystem dynamics, functioning and resistance to perturbations and allows to plan coherent management strategies.