While the formation
and breaking of transition metal (TM)–carbon
bonds plays a pivotal role in the catalysis of organic compounds,
the reactivity of inorganometallic species, that is, those involving
the transition metal (TM)–metalloid (E) bond, is of key importance
in most conversions of metalloid derivatives catalyzed by TM complexes.
This Review presents the background of inorganometallic catalysis
and its development over the last 15 years. The results of mechanistic
studies presented in the Review are related to the occurrence of TM–E
and TM–H compounds as reactive intermediates in the catalytic
transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb,
or Te). The Review illustrates the significance of inorganometallics
in catalysis of the following processes: addition of metalloid–hydrogen
and metalloid–metalloid bonds to unsaturated compounds; activation
and functionalization of C–H bonds and C–X bonds with
hydrometalloids and bismetalloids; activation and functionalization
of C–H bonds with vinylmetalloids, metalloid halides, and sulfonates;
and dehydrocoupling of hydrometalloids. This first Review on inorganometallic
catalysis sums up the developments in the catalytic methods for the
synthesis of organometalloid compounds and their applications in advanced
organic synthesis as a part of tandem reactions.