A concise synthesis of acylborons was achieved by ozonolysis of alkenyl MIDA (N-methyliminodiacetic acid) boronates. This reaction exhibits excellent functional-group tolerance and is applicable to various acyl MIDA boronates and potassium acyltrifluroborates (KATs) which could not be synthesized by previous methods. In addition, α-amino acylborons, which would be essential for peptide ligations, were prepared for the first time. The acylboron of l-alanine was obtained in high enantiopurity and found to be configurationally stable. Oligopeptide synthesis between the α-amino KATs and amino acid in dilute aqueous media was studied.
Potassium acyltrifluoroborates (KATs) were prepared through copper(I)‐catalyzed borylation of aldehydes and subsequent oxidation. This synthetic route is characterized by the wide range of aldehydes accessible, favorable step economy, mild reaction conditions, and tolerance of various functional groups, and it enables the facile generation of a range of KATs, for example, bearing halide, sulfide, acetal, or ester moieties. Moreover, this method was applied to the three‐step synthesis of various α‐amino acid analogues that bear a KAT moiety on the C‐terminus by using naturally occurring amino acids as the starting material.
The regiodivergent C-H borylation of 2,5-disubstituted heteroarenes with bis(pinacolato)diboron was achieved by using iridium catalysts formed in situ from [Ir(OMe)(cod)]2 /dtbpy (cod=1,5-cyclooctadiene, dtbpy: 4,4'-di-tert-butyl-2,2'-bipyridine) or [Ir(OMe)(cod)]2 /2 AsPh3 . When [Ir(OMe)(cod)]2 /dtbpy was used as the catalyst, borylation at the 4-position proceeded selectively to afford 4-borylated products in high yields (dtbpy system A). The regioselectivity changed when the [Ir(OMe)(cod)]2 /2 AsPh3 catalyst was used; 3-borylated products were obtained in high yields with high regioselectivity (AsPh3 system B). The regioselectivity of borylation was easily controlled by changing the ligands. This reaction was used in the syntheses of two different bioactive compound analogues by using the same starting material.
The Ca2+-binding photoprotein aequorin is a complex of apoAequorin (apoprotein) and (S)-2-peroxycoelenterazine. Aequorin can be regenerated by the incubation of apoAequorin with coelenterazine and molecular oxygen (O2). In this study, to investigate the molecular recognition of apoAequorin for coelenterazine using chemical probes, the chiral deaza-analogs of (S)- and (R)-deaza-CTZ (daCTZ) for coelenterazine and of (S)-2- and (R)-2-hydroxymethyl-deaza-CTZ (HM-daCTZ) for 2-peroxycoelenterazine were efficiently prepared by the improvement method. The chiral deaza-analogs of (S)-daCTZ and (S)-HM-daCTZ selectively inhibited the regeneration step to aequorin by binding the catalytic site of coelenterazine in the apoAequorin molecule. The crystal structures of the apoAequorin complexes with (S)-daCTZ and (S)-HM-daCTZ were determined, suggesting that the hydroxy moiety at the C6-hydroxyphenyl group and the carbonyl moiety of the imidazopyrazinone ring in coelenterazine are essential to bind the apoAequorin molecule through hydrogen bonding. Therefore, the chiral deaza-analogs of coelenterazine can be used as a probe to study the interaction between coelenterazine and the related proteins including photoprotein, luciferase, and coelenterazine-binding protein.
Ac oncise synthesis of acylborons was achieved by ozonolysis of alkenyl MIDA( N-methyliminodiacetic acid) boronates.T his reaction exhibits excellent functional-group tolerance and is applicable to various acyl MIDAb oronates and potassium acyltrifluroborates (KATs) which could not be synthesized by previous methods.I na ddition, a-amino acylborons,w hich would be essential for peptide ligations, were prepared for the first time.T he acylboron of l-alanine was obtained in high enantiopurity and found to be configurationally stable.O ligopeptide synthesis between the a-amino KATs and amino acid in dilute aqueous media was studied. Scheme 1. A) Previous approaches to the synthesis of acylborons. B) Acylboron synthesis by ozonolysis of alkenylM IDA boronate. Bt = benzotriazole, MIDA = N-methyliminodiacetic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.