In the treatment of lifestyle diseases, including metabolic syndrome and type 2 diabetes, it is important to lower body mass and fat tissue, and consequently, to increase insulin-sensitivity. Unfortunately, it often happens that low-energy diet which would lower overweight is not observed and, thus, it does not bring the expected effects. This paper discusses the influence of three diets—control, high-fructose, and high-fatty diet—on absorption of energy from food in order to transform it into body mass. The kJ/g ratio which describes this process has been calculated. In the tested diets, the addition of fructose (79.13 ± 2.47 kJ/g) or fat (82.48 ± 2.28 kJ/g) results in higher transformation of energy into body mass than in the case of control diet (89.60 ± 1.86 kJ/g). The addition of Na[VO(O2)2(4,4′-Me2-2,2′-bpy)]•8H2O (where 4,4′-Me2-2,2′-bpy = 4,4′-dimethyl-2,2′-bipyridine) results in statistical increase of that ratio: fructose diet (86.88 ± 0.44 kJ/g), fat diet (104.68 ± 3.01 kJ/g), and control diet (115.98 ± 0.56 kJ/g), respectively. Fat diet statistically influences the decrease of kidney mass in comparison to the other diets. The application of the tested vanadium compound results also in the statistical decrease of the fatty liver caused by fructose and fat diet.