We identified a human orthologue of tRNA:m5C methyltransferase from Saccharomyces cerevisiae, which has been previously shown to catalyse the specific modification of C34 in the intron-containing yeast pre-tRNA(CAA)Leu. Using transcripts of intron-less and intron-containing human tRNA(CAA)Leu genes as substrates, we have shown that m5C34 is introduced only in the intron-containing tRNA precursors when the substrates were incubated in the HeLa extract. m5C34 formation depends on the nucleotide sequence surrounding the wobble cytidine and on the structure of the prolongated anticodon stem. Expression of the human Trm4 (hTrm4) cDNA in yeast partially complements the lack of the endogenous Trm4p enzyme. The yeast extract prepared from the strain deprived of the endogenous TRM4 gene and transformed with hTrm4 cDNA exhibits the same activity and substrate specificity toward human pre-tRNALeu transcripts as the HeLa extract. The hTrm4 MTase has a much narrower specificity against the yeast substrates than its yeast orthologue: human enzyme is not able to form m5C at positions 48 and 49 of human and yeast tRNA precursors. To our knowledge, this is the first report showing intron-dependent methylation of human pre-tRNA(CAA)Leu and identification of human gene encoding tRNA methylase responsible for this reaction.
Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.
A range of interactions between gut microbiota and iron (Fe) metabolism is described. Oral probiotics ameliorate host’s iron status. However, this has been proven for single-strain probiotic supplements. Dose-dependence of beneficial probiotic supplementation effect on iron turnover remains unexplored. Our study aimed to investigate the effects of oral multispecies probiotic supplementation in two doses on iron status in rats. Thirty rats were randomized into three groups receiving multispecies probiotic supplement at a daily dose of 2.5 × 109 CFU (PA group, n = 10) and 1 × 1010 CFU (PB group, n = 10) or placebo (KK group, n = 10). After 6 weeks, rats were sacrificed for analysis, blood samples, and organs (the liver, heart, kidneys, spleen, pancreas, femur, testicles, duodenum, and hair) were collected. The total fecal bacteria content was higher in the PB group vs. PA group. Unsaturated iron-binding capacity was higher in the PB group vs. KK group. Serum Fe was lower in both PA and PB vs. KK group. Iron content in the liver was higher in the PB group vs. KK group; in the pancreas, this was higher in the PB group vs. the KK and PA group, and in the duodenum, it was higher in both supplemented groups vs. the KK group. A range of alterations in zinc and copper status and correlations between analyzed parameters were found. Oral multispecies probiotic supplementation exerts dose-independent and beneficial effect on iron bioavailability and duodenal iron absorption in the rat model, induces a dose-independent iron shift from serum and intensifies dose-dependent pancreatic and liver iron uptake.
Providing safe products and compliance of legal requirements is still a great challenge for food manufacturers regarding microbiological safety, especially in the context of Listeria monocytogenes food contamination. L. monocytogenes is a human pathogen, which, due to the ability of survival and proliferation in preservation conditions such as high salinity, acidity and refrigeration temperatures, is a significant threat to the food industry. Novel methods of elimination of the bacterial pathogen in food products and food processing environments are required. Among emerging technologies, one of the very promising solutions is using bacteriophages as natural control agents. This review focus on the major aspects of phage-based inhibition of L. monocytogenes in aspects of food safety. We describe an overview of foods and technological factors influencing the efficacy of phage use in biocontrol of L. monocytogenes. The most noteworthy are food matrix properties, phage concentration and stability, the time of phage application and product storage temperature. The combined methods, phage immobilization (active packing), pathogen resistance to phages and legislation aspects of antilisterial bacteriophage use in the food industry are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.