“…In this context, many studies have been addressed to develop alternative catalysts to noble metals (i.e., platinum), which are expensive, rare and sensitive to poisoning [3,8]. Platinum-group-metal-free (PGM-free) catalysts represent a very promising category of new catalysts due to their tuneable composition based on transition metals (Fe, Ni, Co, Mn, Cu) supported on carbon substrates (graphene, graphene oxide, carbon nanotubes, black pearls, carbon black and biochar), which are also doped with heteroatoms (N, P, S, O) [12][13][14][15][16][17][18][19][20] Among PGM-free catalysts, metal-nitrogen-carbon (M-N-C) materials have been widely investigated toward ORR in acidic and alkaline pH, whereas the study of ORR in neutral media still accounts for few reports [6,8,12,21,22]. So far, attention has been paid to the development of Fe-N-C catalysts, and the efficiency of active sites in Fe-N-C composites has been ascribed to the coordination of iron to nitrogen heteroatoms in FeNx structure, which cause a beneficial effect on the direct conversion of oxygen to water via a four-electron mechanism [1,8,10,18].…”