Excess selenium (Se) in the aquatic food chain is embryotoxic and teratogenic to avocets, stilts, and other waterbirds. American avocet (Recurvirostra americana) and black-necked stilt (Himantopus mexicanus) eggs were collected from three sites in the Tulare Lake Basin of California, USA, and hatched in the laboratory. These sites included the Tulare Lake Drainage District-north (TLDD-N, water 2.5 ppb Se), TLDD-south (TLDD-S, water 8.6 ppb Se), and Westfarmers (WF, water 190 ppb Se). Highest egg Se concentrations occurred at WF (geometric mean 31.4 ppm dry wt for avocets and 20.5 ppm dry wt for stilts). Mean egg Se concentrations were 6.7 ppm for avocets and 8.4 ppm for stilts at TLDD-S, and 3.3 ppm for avocets and 2.3 ppm for stilts at TLDD-N. Hatching success and incidence of malformations did not differ among sites, but yolk sac-free hatching weights and bone lengths were less for avocets at the WF site, whereas liver weights and liver to body weight ratios were greater at that site. With increasing Se concentration, oxidative stress was most apparent in avocet hatchlings from WF: hepatic glutathione (GSH) peroxidase activity increased, glucose-6-phosphate dehydrogenase activity decreased, and oxidized glutathione (GSSG) concentration as well as the ratio of GSSG to reduced GSH concentration increased. In stilts, hepatic GSH concentration was lower in WF hatchlings. In conclusion, our findings of Se-impaired embryo growth and hepatotoxicity in avocet hatchlings suggest that oxidative stress observed in hatchlings may be related to these biological effects and may serve as a potential bioindicator of subsequent impaired functions.