SUMMARY
The main objective of this study was to determine heart rate(fh) and the energetic costs of specific behaviours of king penguins while ashore and while foraging at sea during their breeding period. In particular, an estimate was made of the energetic cost of diving in order to determine the proportion of dives that may exceed the calculated aerobic dive limit (cADL; estimated usable O2 stores/estimated rate of oxygen consumption during diving).
An implanted data logger enabled fh and diving behaviour to be monitored from 10 free-ranging king penguins during their breeding period. Using previously determined calibration equations, it was possible to estimate rate of oxygen consumption(V̇O2) when the birds were ashore and during various phases of their foraging trips. Diving behaviour showed a clear diurnal pattern, with a mixture of deep (>40 m),long (>3 min) and shallow (<40 m), short (<3 min) dives from dawn to dusk and shallow, short dives at night. Heart rate during dive bouts and dive cycles (dive + post-dive interval) was 42% greater than that when the birds were ashore. During diving, fh was similar to the `ashore'value (87±4 beats min–1), but it did decline to 76% of the value recorded from king penguins resting in water. During the first hour after a diving bout, fh was significantly higher than the average value during diving (101±4 beats min–1) and for the remainder of the dive bout.
Rates of oxygen consumption estimated from these (and other) values of fh indicate that when at sea, metabolic rate (MR) was 83%greater than that when the birds were ashore [3.15 W kg–1(–0.71, +0.93), where the values in parentheses are the computed standard errors of the estimate], while during diving bouts and dive cycles,it was 73% greater than the `ashore' value. Although estimated MR during the total period between dive bouts was not significantly different from that during dive bouts [5.44 W kg–1 (–0.30, +0.32)], MR during the first hour following a dive bout was 52% greater than that during a diving bout. It is suggested that this large increase following diving(foraging) activity is, at least in part, the result of rewarming the body,which occurs at the end of a diving bout. From the measured behaviour and estimated values of V̇O2, it was evident that approximately 35% of the dives were in excess of the cADL. Even if V̇O2 during diving was assumed to be the same as when the birds were resting on water,approximately 20% of dives would exceed the cADL. As V̇O2 during diving is, in fact, that estimated for a complete dive cycle, it is quite feasible that V̇O2 during diving itself is less than that measured for birds resting in water. It is suggested that the regional hypothermia that has been recorded in this species during diving bouts may be at least a contributing factor to such hypometabolism.