The use of RNA-Seq data and the generation of de novo transcriptome assemblies have been piv- otal for studies in ecology and evolution. This is distinctly true for non-model organisms, where no genome information is available; yet, studies of differential gene expression, DNA enrichment baits design, and phylogenetics can all be accomplished with the data gathered at the transcrip- tomic level. Multiple tools are available for transcriptome assembly, however, no single tool can provide the best assembly for all datasets. Therefore, a multi assembler approach, followed by a reduction step, is often sought to generate an improved representation of the assembly. To reduce errors in these complex analyses while at the same time attaining reproducibility and scalabil- ity, automated workflows have been essential in the analysis of RNA-Seq data. However, most of these tools are designed for species where genome data is used as reference for the assembly process, limiting their use in non-model organisms. We present TransPi, a comprehensive pipeline for de novo transcriptome assembly, with minimum user input but without losing the ability of a thorough analysis. A combination of different model organisms, kmer sets, read lengths, and read quantities were used for assessing the tool. Furthermore, a total of 49 non-model organisms, span- ning different phyla, were also analyzed. Compared to approaches using single assemblers only, TransPi produces higher BUSCO completeness percentages, and a concurrent significant reduction in duplication rates. TransPi is easy to configure and can be deployed seamlessly using Conda, Docker and Singularity.