2000
DOI: 10.1016/s0375-9601(00)00657-5
|View full text |Cite
|
Sign up to set email alerts
|

Is the largest Lyapunov exponent preserved in embedded dynamics?

Abstract: The method of reconstruction for an n-dimensional system from observations is to form vectors of m consecutive observations, which for m > 2n, is generically an embedding. This is Takens' result. Our analytical examples show that it is possible to obtain spurious Lyapunov exponents that are even larger than the largest Lyapunov exponent of the original system. Therefore, we present examples where the largest Lyapunov exponent may not be preserved under Takens' embedding theorem.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2003
2003
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(7 citation statements)
references
References 20 publications
0
7
0
Order By: Relevance
“…Therefore, the multiplicative ergodic theorem implies that the Lyapunov exponents are invariant numbers representing ‘globally’ the complexity of the dynamical system under study, independently of the initial condition considered. In this sense it is also important to point out that Gen$\def\rotf#1{\hbox to\wd#1{\hskip\wd#1\rotstart{-1 1 scale} \box#1\hss}\rotfinish} \newbox\rotfigbox \newdimen\rotdimen \def\vspec#1{\special{ps:#1}} \def\rotstart#1{\vspec{gsave currentpoint currentpoint translate #1 neg exch neg exch translate}} \def\rotfinish{\vspec{currentpoint grestore moveto}} \def\rotlt#1{\rotdimen=\ht#1\advance\rotdimen by\dp#1 \hbox to\rotdimen{\vbox to\wd#1{\vskip\wd#1\rotstart{270 rotate} \copy#1\vss}\hss}\rotfinish} \def\revcedil#1{\setbox1=\hbox{\char24}\setbox0\hbox{#1} {\ooalign{{\kern0pt\hbox to\wd0{\hfil\rotf{1}\hfil}}\crcr\noalign{\kern-0.65em\nointerlineskip}\unhbox0}}} \revcedil{c}$ ay and Dechert (1992, 1996) and Dechert and Gen$\def\rotf#1{\hbox to\wd#1{\hskip\wd#1\rotstart{-1 1 scale} \box#1\hss}\rotfinish} \newbox\rotfigbox \newdimen\rotdimen \def\vspec#1{\special{ps:#1}} \def\rotstart#1{\vspec{gsave currentpoint currentpoint translate #1 neg exch neg exch translate}} \def\rotfinish{\vspec{currentpoint grestore moveto}} \def\rotlt#1{\rotdimen=\ht#1\advance\rotdimen by\dp#1 \hbox to\rotdimen{\vbox to\wd#1{\vskip\wd#1\rotstart{270 rotate} \copy#1\vss}\hss}\rotfinish} \def\revcedil#1{\setbox1=\hbox{\char24}\setbox0\hbox{#1} {\ooalign{{\kern0pt\hbox to\wd0{\hfil\rotf{1}\hfil}}\crcr\noalign{\kern-0.65em\nointerlineskip}\unhbox0}}} \revcedil{c}$ ay (2000) have studied the topological invariance of the Lyapunov exponent estimator from the observed dynamics.…”
Section: A Statistical Framework For Testing Chaotic Dynamics Via mentioning
confidence: 99%
“…Therefore, the multiplicative ergodic theorem implies that the Lyapunov exponents are invariant numbers representing ‘globally’ the complexity of the dynamical system under study, independently of the initial condition considered. In this sense it is also important to point out that Gen$\def\rotf#1{\hbox to\wd#1{\hskip\wd#1\rotstart{-1 1 scale} \box#1\hss}\rotfinish} \newbox\rotfigbox \newdimen\rotdimen \def\vspec#1{\special{ps:#1}} \def\rotstart#1{\vspec{gsave currentpoint currentpoint translate #1 neg exch neg exch translate}} \def\rotfinish{\vspec{currentpoint grestore moveto}} \def\rotlt#1{\rotdimen=\ht#1\advance\rotdimen by\dp#1 \hbox to\rotdimen{\vbox to\wd#1{\vskip\wd#1\rotstart{270 rotate} \copy#1\vss}\hss}\rotfinish} \def\revcedil#1{\setbox1=\hbox{\char24}\setbox0\hbox{#1} {\ooalign{{\kern0pt\hbox to\wd0{\hfil\rotf{1}\hfil}}\crcr\noalign{\kern-0.65em\nointerlineskip}\unhbox0}}} \revcedil{c}$ ay and Dechert (1992, 1996) and Dechert and Gen$\def\rotf#1{\hbox to\wd#1{\hskip\wd#1\rotstart{-1 1 scale} \box#1\hss}\rotfinish} \newbox\rotfigbox \newdimen\rotdimen \def\vspec#1{\special{ps:#1}} \def\rotstart#1{\vspec{gsave currentpoint currentpoint translate #1 neg exch neg exch translate}} \def\rotfinish{\vspec{currentpoint grestore moveto}} \def\rotlt#1{\rotdimen=\ht#1\advance\rotdimen by\dp#1 \hbox to\rotdimen{\vbox to\wd#1{\vskip\wd#1\rotstart{270 rotate} \copy#1\vss}\hss}\rotfinish} \def\revcedil#1{\setbox1=\hbox{\char24}\setbox0\hbox{#1} {\ooalign{{\kern0pt\hbox to\wd0{\hfil\rotf{1}\hfil}}\crcr\noalign{\kern-0.65em\nointerlineskip}\unhbox0}}} \revcedil{c}$ ay (2000) have studied the topological invariance of the Lyapunov exponent estimator from the observed dynamics.…”
Section: A Statistical Framework For Testing Chaotic Dynamics Via mentioning
confidence: 99%
“…These additional Lyapunov exponents have been labeled as spurious Lyapunov exponents [e.g. Sauer et al, 1998, Dechert andGençay, 2000]. They pose significant challenges in data-driven identification of true Lyapunov exponents.…”
Section: Paradigm II : Delay Coordinates An Effective and Numerically...mentioning
confidence: 99%
“…(However, since the mdimensional system h has a larger dimension than the n-dimensional system f , the number of smooth Lyapunov exponents that are spurious is m n. This issue is discussed in detail in Dechert and Gencay [10]- [11] and Gencay and…”
Section: Estimation Ofmentioning
confidence: 99%