2011
DOI: 10.1007/s00181-011-0539-z
|View full text |Cite
|
Sign up to set email alerts
|

Is the Pareto–Lévy law a good representation of income distributions?

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0

Year Published

2014
2014
2021
2021

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 31 publications
0
7
0
Order By: Relevance
“…This probability distribution is sometimes referred to as Pareto, Inverse Power Law or Pareto‐Lévy (Edwards ; Scafetta ; Dagsvik et al . ).As an alternative model, these step lengths might be generated from Poisson, Negative Exponential, Gaussian or Gamma probability distributions (Gautestad ; Lundy et al . ).…”
Section: The Lévy and Other ‘Random Walks’mentioning
confidence: 97%
See 1 more Smart Citation
“…This probability distribution is sometimes referred to as Pareto, Inverse Power Law or Pareto‐Lévy (Edwards ; Scafetta ; Dagsvik et al . ).As an alternative model, these step lengths might be generated from Poisson, Negative Exponential, Gaussian or Gamma probability distributions (Gautestad ; Lundy et al . ).…”
Section: The Lévy and Other ‘Random Walks’mentioning
confidence: 97%
“…With a L evy walk, in the absence of resource encounter, different step lengths (l) are assumed to occur with probabilities given by P(l) = al Àl where the exponent l lies within the range 1 < l ≤ 3 and a is a normalizing constant (Viswanathan et al 1999). This probability distribution is sometimes referred to as Pareto, Inverse Power Law or Pareto-L evy (Edwards 2011;Scafetta 2011;Dagsvik et al 2013).As an alternative model, these step lengths might be generated from Poisson, Negative Exponential, Gaussian or Gamma probability distributions (Gautestad 2011(Gautestad , 2013bLundy et al 2013). Other possibilities also exist.…”
Section: The L Evy and Other 'Random Walks'mentioning
confidence: 99%
“…() for a comparison and Clementi and Gallegati (), Dagsvik et al . (), Reed and Fan () or Sarabia et al . () for yet other possibilities.…”
Section: Representing Wealth Distributionsmentioning
confidence: 99%
“…Typical options for income distribution analysis include the log-normal, the gamma distribution (Chakraborti and Patriarca, 2008), the Singh-Maddala (Singh and Maddala, 1976), the Dagum Type I (Dagum, 1977;Kleiber, 2008) or the more flexible Generalized Beta distribution of the Second Kind (McDonald and Ransom, 2008;Jenkins, 2009); see Kleiber and Kotz (2003) for a detailed description of all these distributions, Bandourian et al (2003) for a comparison and Clementi and Gallegati (2005), Dagsvik et al (2013), Reed and Fan (2008) or Sarabia et al (2002) for yet other possibilities. All of these models have however been developed for 'size distributions' and are defined for random variables that take on strictly positive values.…”
Section: Overall Wealth Distributionsmentioning
confidence: 99%
“…Beta1 and Beta2 are, respectively, the beta of first and second kinds. An alternative three-parameter approach that giving a good representation of income distributions in practice is provided by the Pareto-Lévy class (Mandelbrot 1960, Dagsvik et al 2013; unfortunately, except in a few cases, the probability distributions associated with this class cannot be represented in closed form. Dagum (1977Dagum ( , 1980Dagum ( , 1983, McDonald (1984), Butler and McDonald (1989), Majumder and Chakravarty (1990), McDonald and Xu (1995), Bantilan et al (1995), Victoria-Feser (1995, Brachmann et al (1996), Bordley et al (1997), Tachibanaki et al (1997) and Bandourian et al (2003).…”
Section: Generalized Betamentioning
confidence: 99%