Lexical resources are fundamental to tackle many tasks that are central to present and prospective research in Text Mining, Information Retrieval, and connected to Natural Language Processing. In this article we introduce COVER, a novel lexical resource, along with COVERAGE, the algorithm devised to build it. In order to describe concepts, COVER proposes a compact vectorial representation that combines the lexicographic precision characterizing BabelNet and the rich common-sense knowledge featuring Con-ceptNet. We propose COVER as a reliable and mature resource, that has been employed in as diverse tasks as conceptual categorization, keywords extraction, and conceptual similarity. The experimental assessment is performed on the last task: we report and discuss the obtained results, pointing out future improvements. We conclude that COVER can be directly exploited to build applications, and coupled with existing resources, as well.