Calmodulin, a primary plant calcium receptor, is known to be intimately involved with gravitropic sensing and transduction. Using the calmodulin-binding inhibitors trifluoperazine, W7 and calmidazolium, gravitropic curvature of Arabidopsis thaliana (L.) Heynh, ecotype Landsberg, roots was separable into two phases. Phase I was detected at very low concentrations (0.01 microM) of trifluoperazine and calmidazolium, did not involve growth changes, accounted for about half the total curvature of the root and may represent the specific contribution of the cap to gravity sensing. Phase II commenced around 1.0 microM and involved inhibition of both growth and curvature. The agr-3 mutant exhibited a reduced gravitropic response and was found to lack phase I curvature, suggesting that the mutation alters either use or expression of calmodulin. The sequences of wild-type and agr-3 calmodulin (CaM-1) cDNAs, which are root specific were completely determined and found to be identical. Upon gravitropic stimulation, wild-type Arabidopsis seedlings increased calmodulin mRNA levels by threefold in 0.5 h. On the other hand, gravitropic stimulation of agr-3 decreased calmodulin mRNA accumulation. The possible basis of the two phases of curvature is discussed and it is concluded that agr-3 has a lesion located in a general gravity transmission sequence, present in many root cells, which involves calmodulin mRNA accumulation.