Animal vocal communication often relies on call sequences. The temporal patterns of such sequences can be adjusted to other callers, follow complex rhythmic structures or exhibit a metronome‐like pattern (i.e., isochronous). How regular are the temporal patterns in animal signals, and what influences their precision? If present, are rhythms already there early in ontogeny? Here, we describe an exploratory study of Cape fur seal (Arctocephalus pusillus pusillus) barks—a vocalisation type produced across many pinniped species in rhythmic, percussive bouts. This study is the first quantitative description of barking in Cape fur seal pups. We analysed the rhythmic structures of spontaneous barking bouts of pups and adult females from the breeding colony in Cape Cross, Namibia. Barks of adult females exhibited isochrony, that is they were produced at fairly regular points in time. Instead, intervals between pup barks were more variable, that is skipping a bark in the isochronous series occasionally. In both age classes, beat precision, that is how well the barks followed a perfect template, was worse when barking at higher rates. Differences could be explained by physiological factors, such as respiration or arousal. Whether, and how, isochrony develops in this species remains an open question. This study provides evidence towards a rhythmic production of barks in Cape fur seal pups and lays the groundwork for future studies to investigate the development of rhythm using multidimensional metrics.