A systematic study of the comparative performances of different metal-impregnated HZSM-5 catalysts (Zn, Ga, Mo, Co, and Zr) for propane conversion is presented. The physicochemical properties of catalysts were characterized by means of XRD, BET, SEM, TEM, FTIR, XPS, 27Al MAS NMR, NH3-TPD and Py-FTIR. It was found that the acidities of the catalysts were significantly influenced by loading metal. More specifically, Mo-, Co- or Zr-modified catalysts showed a large metal size and low acidic density, resulting high olefin selectivity, while Zn- or Ga-modified catalysts maintained their small metal size and acidic density, and mainly reduced B/L due to the Lewis acid sites created by Zn or Ga species, resulting in high aromatics selectivity. Experimental results also showed that there is a balance between metals size and medium and strong acidity on propane conversion. Moreover, based on the different acidity of metal-modified HZSM-5 catalysts, the mechanism of propane conversion was also discussed.