Oxidative dehydrogenation of propane (ODHP) is a key technology for producing propene from shale gas, but conventional metal oxide catalysts are prone to overoxidation to form valueless COx. Boron-based catalysts were recently found to be selective for this reaction, and B–O–B oligomers are generally regarded as active centers. We show here that the isolated boron in a zeolite framework without such oligomers exhibits high activity and selectivity for ODHP, which also hinders full hydrolysis for boron leaching in a humid atmosphere because of the B–O–SiOx linkage, achieving superior durability in a long-period test. Furthermore, we demonstrate an isolated boron with a –B[OH…O(H)–Si]2 structure in borosilicate zeolite as the active center, which enables the activation of oxygen and a carbon–hydrogen bond to catalyze the ODHP.
These two authors contributed equally to this work.Keywords: rice, biomass digestibility, lodging resistance, cell wall, genetic modification, GH9B and XAT.
SummaryRice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with b-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.