1989
DOI: 10.1128/jb.171.12.6776-6781.1989
|View full text |Cite
|
Sign up to set email alerts
|

Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity

Abstract: A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

1
17
0

Year Published

1994
1994
2019
2019

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 18 publications
(20 citation statements)
references
References 26 publications
1
17
0
Order By: Relevance
“…In an alternative pathway demonstrated by Tempest et al (25), glutamate is aminated to form glutamine by glutamine synthetase (GS; EC 6.3.1.2), the amide group of which is then transferred reductively to 2-oxoglutarate by glutamate synthase (GOGAT; EC 1.4.1.13), resulting in the net conversion of ammonium and 2-oxoglutarate to glutamate. The GS-GOGAT pathway has been found in several microorganisms (2,13,16,23) and in higher plants (18).In Saccharomyces cerevisiae, both pathways for glutamate biosynthesis are present (7,19). Mutants altered in NADP ϩ -GDH have been isolated (6); these show a higher doubling time than that of the wild type when both strains are grown on minimal medium supplemented with ammonia as the sole nitrogen source.…”
mentioning
confidence: 99%
See 4 more Smart Citations
“…In an alternative pathway demonstrated by Tempest et al (25), glutamate is aminated to form glutamine by glutamine synthetase (GS; EC 6.3.1.2), the amide group of which is then transferred reductively to 2-oxoglutarate by glutamate synthase (GOGAT; EC 1.4.1.13), resulting in the net conversion of ammonium and 2-oxoglutarate to glutamate. The GS-GOGAT pathway has been found in several microorganisms (2,13,16,23) and in higher plants (18).In Saccharomyces cerevisiae, both pathways for glutamate biosynthesis are present (7,19). Mutants altered in NADP ϩ -GDH have been isolated (6); these show a higher doubling time than that of the wild type when both strains are grown on minimal medium supplemented with ammonia as the sole nitrogen source.…”
mentioning
confidence: 99%
“…In Saccharomyces cerevisiae, both pathways for glutamate biosynthesis are present (7,19). Mutants altered in NADP ϩ -GDH have been isolated (6); these show a higher doubling time than that of the wild type when both strains are grown on minimal medium supplemented with ammonia as the sole nitrogen source.…”
mentioning
confidence: 99%
See 3 more Smart Citations