Three potential rhizobacteria namely
Burkholderia gladioli
(MTCC 10216),
Pseudomonas
sp. (MTCC 9002) and
Bacillus subtilis
(MTCC 8528) procured from IMTECH, Chandigarh (India) were evaluated individually and as consortia for its phosphate (P) solubilizing ability and effect of growth of fenugreek (
Trigonella foenum-graecum
L.) and tomato (
Lycopersicon esculentum
L.). Phosphate solubilizing ability of these strains individually and as consortia was tested on Pikovskayas agar medium, Phosphate solubilizing agar medium and National Botanical Research Institute phosphate agar medium containing six different sources of insoluble inorganic phosphate such as tri-calcium phosphate (TCP), di-calcium phosphate (DCP), zinc phosphate (ZP), ferric phosphate (FP), sodium di-hydrogen phosphate (SP), and aluminum phosphate (AP), and two organic P such as calcium and sodium phytate. The maximum P solubilizing ability was recorded in consortium-4 having all three potential bacterial strains. Phosphate solubilization after 7
th
day of incubation was 37.9 mg/100 ml of TCP, 40.01 mg/100 ml of DCP, 15.79 mg/100 ml of FP, 43.02 mg/100 ml of SP, no solubilization of ZP and AP, 39.75 mg/100 ml of calcium phytate and 24.01mg/100 ml of sodium phytate. Seed germination and the other plant parameters such as plant height and weight significantly increased in fenugreek and tomato seeds, bio-primed with consortium-4 followed by consortium-3. After bio-priming of seeds in pot assay, the level of phosphorus in soil got increased by 54% in consortium-4 treated soil followed by consortium-3 (47%) over untreated control soil. Based on these findings, consoritium-4 could be recommended as a good bio-inoculant for fenugreek, tomato and other crops in comparison to individual strains and other consortia.