Yersinia enterocolitica is a harmful bacterium transmitted through contaminated food, causing gastrointestinal illness and lymph node inflammation. The rise of drug-resistant strains of Y. enterocolitica poses a serious public health threat, necessitating research on its ecology, related species, and unique genes linked to virulence and antibiotic resistance. This study identified eight microorganisms similar to Y. enterocolitica and conducted a pan-genomic analysis, revealing specific genes exclusive to Y. enterocolitica. Enrichment analysis of these genes unveiled their involvement in antibiotic synthesis pathways, such as siderophore production, osmoregulated periplasmic glucan activation, and antibiotic resistance. These pathways, including biofilm formation and increased antibiotic tolerance, are vital for Yersinia’s virulence. Furthermore, specific genes related to glutamate metabolism, nitrogen regulation, motility, purine, and pyrimidine synthesis may contribute to Y. enterocolitica’s pathogenicity, growth, and virulence factor production. Phylogenetic analysis demonstrated the evolutionary relationship between Y. enterocolitica and similar species like Escherichia coli, Campylobacter jejuni, and Salmonella enterica, stressing the need to monitor Y. enterocolitica in slaughterhouses due to animal carriers. The study’s findings shed light on the ecological factors and genetic mechanisms driving Y. enterocolitica’s pathogenicity and antibiotic resistance. Targeting genes involved in purine and pyrimidine synthesis, such as ushA, cpdB, and deoB, could be potential strategies for controlling pathogenicity and antimicrobial resistance. Understanding the relationships and genetic interactions between Y. enterocolitica and related microorganisms is crucial for developing effective surveillance and management approaches in the future.