A variety of flocculants have been used to aggregate colloidal substances. However, recently, owing to the adverse effects and high costs of conventional flocculants, natural flocculants such as microbial flocculants are gaining attention. The aim of the study was to produce and characterize a bioflocculant from Pichia kudriavzevii MH545928.1 and apply it in wastewater treatment. A mixture of butanol and chloroform (5:2 v/v) was used to extract the bioflocculant. Phenol–sulphuric acid, Bradford and Carbazole assays were utilized for the identification of carbohydrates, proteins and uronic acid, respectively. Scanning electron microscopy (SEM) and elemental detector were employed to determine the surface morphology and elemental compositions. The removal efficiencies were 73%, 49% and 47% for BOD, COD and P, respectively. The bioflocculant (2.836 g/L) obtained showed the presence of carbohydrates (69%), protein (11%) and uronic acid (16%). The bioflocculant displayed a cumulus-like structure and the elemental composition of C (16.92%), N (1.03%), O (43:76%), Na (0.18%), Mg (0.40%), Al (0.80%), P (14.44%), S (1.48%), Cl (0.31%), K (0.34%) and Ca (20.35). It showed the removal efficiencies of 43% (COD), 64% (BOD), 73% (P) and 50% (N) in coal mine wastewater. This bioflocculant is potentially viable to be used in wastewater treatment.