Kůdela V., Krejzar V., Pánková I. (2010): Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture. Plant Protect. Sci., 46: 1-11.Plant pathogenic species Pseudomonas corrugata and P. marginalis were detected and determined in collapsed tomato plants in rockwool slab hydroponic culture in southern Moravia, Czech Republic. Surprisingly, P. marginalis was also determined before planting in apparently healthy grafted tomato transplants grown in hydroponic culture. Moreover, non-pathogenic P. fluorescens, P. putida, P. synxantha, and Stenotrophomonas malthophilia were identified. The Biolog Identification GN2 MicroPlate TM System (Biolog, Inc., Hayward, USA)was used for identification of bacterial isolates. Cultures of P. corrugata and P. marginalis were used in a greenhouse pathogenicity experiment. Seven weeks old tomato plants of cv. Moneymaker grown in sterilised perlite were inoculated into the stem with a hypodermic needle at one point above the cotyledon node. In inoculated tomato plants, disease symptoms were observed that included external and internal dark brown lesions around the inoculation site, watering and collapse of pith and sometimes also vascular browning and wilting of leaves. In comparison with P. marginalis, P. corrugata appeared to be a much stronger pathogen. Both tested Pseudomonas species were recovered from inoculated tomato plants. P. corrugata was found to move both upwards to the apex of the stem and downwards from the site of the inoculated stem into roots. When inoculated into potato tuber slices, some tomato strains of P. marginalis, P. fluorescens, P. synxantha, and Pseudomonas sp. produced soft rot. However, other strains of the same species were not able to macerate the potato tissue. It is concluded that P. corrugata and P. marginalis can be associated with the collapse of tomato crop in soilless culture grown in a greenhouse. This is the first report on P. corrugata in tomato plants in the Czech Republic. The role of plant pathogenic bacteria, fungal root rot and vascular pathogens and Pepino mosaic virus in the collapse of tomato plants is discussed.