Abstract:The extracellular phytase structural gene was isolated from phytopathogenic fungus Fusarium oxysporum using PCR amplification (GenBank accession number KC708486). The gene possesses an open reading frame of 1,514 bp and two coding regions 1-44 and 156-1458 with one intron (45-155). The phy gene from F. oxysporum (Fophy) encodes a putative phytase protein of F. oxysporum (FoPhy) of 448 amino acids, which includes a putative signal peptide (21 residues). The deduced amino acid sequence of FoPhy exhibits 98% sequence identity with Aspergillus niger and Aspergillus awamori phytases. The deduced protein sequence contains the consensus motifs (RHGXRXP and HD), eight conserved cysteine residues and ten conserved putative N-glycosylation sites, which are conserved among histidine acid phosphatases. Computed structural model of FoPhy was found to consist of mixed α/β motifs and probable loops. The predicted model resembles the structure of Aspergillus niger phytase (root mean square deviation 0.23Å). Ramachandran plot analysis revealed that 95.0% portion of residues fall into the most favourable regions. The predicted three-dimensional structures of FoPhy on molecular docking with substrates like inositol hexaphosphate, inositol hexasulphate and N-acetyl D-glucosamine showed its interaction with conserved histidine and aspartic acid residues in the active site, as also known for other fungal phytases. This study provides a detailed identification and characterization of the phytase from F. oxysporum, which may be helpful in elucidation of its role in pathogenesis and other transcriptional and expression studies.