Sixteen polymorphic Simple sequence repeat (SSR) markers were used to determine the genetic diversity and varietal identification among 38 soybean (Glycine max (L.) Merr.) genotypes which are at present under seed multiplication chain in India. A total of 51 alleles with an average of 2.22 alleles per locus were detected. The polymorphic information content (PIC) among genotypes varied from 0.049 (Sat_243 and Satt337) to 0.526 (Satt431) with an average of 0.199. The pair wise genetic similarity between soybean varieties varied from 0.56 to 0.97 with an average of 0.761. These 16 SSR markers successfully distinguished 12 of the 38 soybean genotypes. These results suggest that used SSR markers are efficient for measuring genetic diversity and relatedness as well as identifying varieties of soybeans. Diverse genetic materials may be used for genetic improvements of soybean genotypes.
Genetic variations of 15 Brahmi (Bacopa monnieri L.) accessions were evaluated using random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) markers. During RAPD analysis, amplification of genomic DNA of the 15 accessions by 22 primers generated 197 fragments, of which 187 were polymorphic with an average of 8.95 bands per primer. The amplified products varied in size from 2,200 to 250 bp. Twenty-five selected ISSR primers produced 284 bands across 15 accessions, of which 270 were polymorphic with an average of 10.80 bands per primer. The PIC value ranges from 0.363 to 0.908 for RAPD primers, while 0.419 to 0.836 in case of ISSR. The size of amplified bands ranged from 2,800 to 240 bp. Similarity index values ranged from 0.16 to 0.95 (RAPD), 0.18 to 0.98 (ISSR) and 0.179 to 0.945 for pooled ISSR and RAPD markers data. Mantel test revealed the similar distribution pattern of the polymorphism between RAPD and ISSR markers and the correlation co-efficient (r) was 0.71384. The results indicated that both of the marker systems RAPD and ISSR, individually or combined can be effectively used in determination of genetic relationship among B. Monnieri accessions collected from different parts of Central India. It could be concluded that the information of genetic similarities and diversity among Brahmi accessions is necessary for their conservation and breeding programs.
Soybean (Glycine max (L) Merrill) is used in India mostly as a substantial fund of protein and oil, which makes the crop significantly important. Somaclonal variation has been researched as a base of additional variability for drought in soybean. In the present experiment calli/cell clumps/embryoids rose from immature and mature embryonic axis and cotyledons explants were exposed to different concentrations of polyethylene glycol (PEG6000). A discontinuous method proved to be superior as it permitted the calli/embryoids/cell clumps to regain their regeneration competence. A total of 64 (12.21%) plantlets of genotype JS335 and 78 (13.13%) of genotype JS93-05 were regenerated after four consequent subcultures on the selection medium with an effective lethal concentration of 20% PEG6000, and proliferated calli/embryoids/cell clumps were further subcultured on Murashige and Skoog regeneration medium supplemented with 0.5 mgL−1 each of α-napthalene acetic acid (NAA), 6-benzyladenine (BA) and Kinetin (Kn), 20.0 gL−1 sucrose and 7.5 gL−1 agar. Putative drought-tolerant plantlets were acquired from genotype JS93-05 (38) in more numbers compared to genotype JS335 (26). Random decamer primers confirmed the presence of variability between mother plants and regenerated plants from both the genotypes. Since these plantlets recovered from tolerant calli/embryoids/cell clumps selected from the medium supplemented with PEG6000, the possibility exists that these plants may prove to be tolerant against drought stress.
Background: The growth and productivity of soybean are adversely affected by an array of biotic factors. Viruses are one of them as they cause great loss to the yield of soybean in India. The present study was conducted with an objective to identify yellow mosaic virus (YMV) resistant genotypes among the selected set of 53 soybean genotypes. Methods: The field screening was performed to identify YMV resistant genotypes. The field data was compared with molecular data recorded on the basis of gene specific SSR molecular markers. Result: During field study, 11 genotypes were found to be highly resistant, 26 resistant, 6 moderately resistant, 4 moderately susceptible, 3 susceptible, while three genotypes namely: JS335, JS 97-52 and RVS 2001-4 were found to be highly susceptible. In molecular analysis three genotypes viz.,: JS 20-29, JS 20-69 and JS 20-98 were found to be resistant against YMV. Among the polymorphic SSR markers the highest genetic diversity (0.4785) was observed with Satt554 while lowest genetic diversity (0.037) was observed with Satt308. Similarly polymorphism information content (PIC) was highest (0.364) in Satt554 and lowest (0.0363) in Satt308 among all polymorphic markers used for screening against YMV. The resistant genotypes identified in this study may be used as donor of resistance gene against YMV to develop improved genotypes which would stand as barrier against spread of the disease to newer areas and thus it can boost production and productivity of soybean in the country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.