Small organic molecules (SOMs) with fascinating chiroptical properties have received much attention for their potential applications in photoelectric and biological devices. As an important research tool, circularly polarized luminescence (CPL) provides information about the chiral structures of these molecules in their excited state, and has been an active area of research. With the development of the commercially available CPL instrumentation, currently, more and more research groups have attempted to enhance the CPL parameters (i.e., quantum yield and dissymmetry factor) of the chiral SOMs from all aspects. This review summarizes the latest five years progresses in research on the experimental techniques and theoretical calculations of CPL emitted from SOMs, as well as forecasting its trend of development.