The synthesis, spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand) are described. They were found to possess several unusual features-the most notable of which is their strong tendency to display acute interligand, Ch-M-Ch, bond angles that are often well below 90°.Furthermore, and contrary to normal steric expectations, the interligand angles were 2 found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, including corrections for dispersion effects, led to the conclusion that dispersion forces play a key role in stabilizing their acute interligand angles.