In this work, we study the nematic-isotropic phase transition based on the dynamics of the Landau-De Gennes theory of liquid crystals. At the critical temperature, the Landau-De Gennes bulk potential favors the isotropic phase and nematic phase equally. When the elastic coefficient is much smaller than that of the bulk potential, a scaling limit can be derived by formal asymptotic expansions: the solution gradient concentrates on a closed surface evolving by mean curvature flow. Moreover, on one side of the surface the solution tends to the nematic phase which is governed by the harmonic map heat flow into the sphere while on the other side, it tends to the isotropic phase. To rigorously justify such a scaling limit, we prove a convergence result by combining weak convergence methods and the modulated energy method. Our proof applies as long as the limiting mean curvature flow remains smooth.