With the extension of the deep space exploration program, the boundaries of human exploration will be pushed forward to the surface of Mars. Over the past nearly 60 years manned spaceflight and experimental findings demonstrated that spaceflight induced bone loss, muscle atrophy, cardiovascular remodeling and space-related medical problems (Durante and Cucinotta, 2008). There are some long-term spaceflight missions planned to implement in the next decades, however, health risks and protections from spaceflight exposures are incompletely clear and still remain a primary concern for manned deep space explorations (Zhao et al., 2018; Wang et al., 2019). Although more than 560 people have the spaceflight experience, only four individuals have participated in long-term spaceflight missions lasting 1 year or more (Stepanek et al., 2019). There is an urgent need to better understand the hazards of long-term spaceflight environment, including weightlessness, ionizing radiation, confinement, disrupted circadian rhythm etc. Recently, one work published in Science (Garrett-Bakelman et al., 2019) showed a systematic biomedical research of the NASA Twins Study and health risk assessments during a 1-year mission onboard the International Space Station (ISS). The use of twin model is an excellent experiment design with the improved reliability and authenticity of the obtained data from this small sample experiment. As compared to his twin on the earth, the astronaut living in space presented some changes in telomeres, DNA damage and methylation, immune, microbial, mitochondrial, cardiovascular, body mass and nutrition, neuro-ocular, cognitive performance. First, the authors found that the telomere unexpectedly elongated