Steam generators are components in which heat produced in the reactor core is transferred to the secondary side, the steam supply system, of the nuclear power plant (NPP). Steam generators (SGs) have to fulfil special nuclear regulatory requirements regarding their size, selection of materials, pressure loads, impact on the NPP safety, etc. The primary-side fluid is liquid water at the high pressure, and the fluid on the secondary side is saturated water-steam mixture at the pressure twice as low. A special attention is given to preserving the boundary between the contaminated water in the primary reactor coolant system and the water-steam mixture in the secondary system. A brief overview of the SG design, its operation and the mathematical correlations used to quantify heat transfer is given in the chapter. Results of the SG transient behaviour obtained by the simulation with the best-estimate computer code RELAP5, developed for safety analyses of NPPs, are also presented. Two types of steam generators are analyzed: the inverted U-tube SG, which is commonly found in the present-day pressurized water reactors and the helicalcoil SG that is part of the new-generation reactor designs.