Since metros are high capacity, fast and large in size compared to other urban rail vehicles, the importance of body strength is very critical. In this study, a four-car metro system was designed and structural analyses of the vehicle body were carried out using the finite element method according to EN 12663-1 standard. Structural analyses were performed under three different conditions. the total mass of the 22.7 m long vehicle with all its equipment was 35000 kg, and the total passenger mass was calculated as 27020 kg based on the presence of 8 passengers per square meter, and the total total mass was taken as 62020 kg. Various sizes of SUS304 stainless steel profiles and sheet materials have been selected for the body carrier skeleton system of the vehicle. In the analysis; vertical loads were made on the passenger side of the vehicle body and horizontal compression loads were made on the bumper areas and maximum stress and displacement amounts were determined. It was found that in the passenger compartment of the car body, the maximum amount of stress in vertical loads is below the yield stress, but in the case of compression loading in the bumper area, the maximum stress is above the yield stress. In order to provide the necessary stress conditions for the design of the buffer zone and its surroundings, solution proposals have been made to revise the design.