“…Also, two-dimensional fuzzy integral equations have been noticed by a lot of researchers because of their broad applications in engineering sciences. Some of the most important papers in this area are trapezoidal quadrature rule and iterative method [10][11][12], triangular functions [13], quadrature iterative [14], Bernstein polynomials [15], collocation fuzzy wavelet like operator [16], homotopy analysis method (HAM) [17], open fuzzy cubature rule [18], kernel iterative method [19], modified homotopy pertubation [20], block-pulse functions [21], optimal fuzzy quadrature formula [22], and finally, iterative method and fuzzy bivariate block-pulse functions [23]. Also, some researchers have solved one-dimensional fuzzy Fredholm integral equations by using fuzzy interpolation via iterative method such as: iterative interpolation method [9], Lagrange interpolation based on the extension principle [5], and spline interpolation [7].…”