In this paper, linear beamforming design for uplink amplify-and-forward relaying cellular networks, in which multiple mobile terminals rely on one relay station to communicate with the base station, is investigated. In particular, the base station, relay station and mobile terminals are all equipped with multiple antennas. Based on linear minimum mean-square-error (LMMSE) criterion and exploiting a hidden convexity in the problem, the precoder matrices at multiple mobile terminals, forwarding matrix at relay station and equalizer matrix at base station are jointly designed. Furthermore, several existing linear beamforming designs for multi-user (MU) MIMO systems and AF MIMO relaying systems can be considered as special cases of the proposed solution. Simulation results are presented to demonstrate the performance advantage of the proposed algorithm.