The relativistic Lagrangian in presence of potentials was formulated directly from the metric, with the classical Lagrangian shown embedded within it. Using it we formulated covariant equations of motion, a deformed Euler-Lagrange equation, and relativistic Hamiltonian mechanics. We also formulate a modified local Lorentz transformation, such that the metric at a point is invariant only under the transformation defined at that point, and derive the formulae for time-dilation, length contraction, and gravitational redshift. Then we compare our formulation under non-relativistic approximations to the conventional ad-hoc formulation, and we briefly analyze the relativistic Liénard oscillator and the spacetime it implies.