For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.