Summary
The ability to move and hover has made rotary‐wing unmanned aerial vehicles (UAVs) suitable platforms to act as flying communications relays (FCRs), aiming at providing on‐demand, temporary wireless connectivity when there is no network infrastructure available or a need to reinforce the capacity of existing networks. However, since UAVs rely on their on‐board batteries, which can be drained quickly, they typically need to land frequently for recharging or replacing them, limiting their endurance and the flying network availability. The problem is exacerbated when a single FCR UAV is used. The FCR UAV energy is used for two main tasks: Communications and propulsion. The literature has been focused on optimizing both the flying network performance and energy efficiency from the communications point of view, overlooking the energy spent for the UAV propulsion. Yet, the energy spent for communications is typically negligible when compared with the energy spent for the UAV propulsion. In this article, we propose energy‐aware relay positioning (EREP), an algorithm for positioning the FCR taking into account the energy spent for the UAV propulsion. Building upon the conclusion that hovering is not the most energy‐efficient state, EREP defines the trajectory and speed that minimize the energy spent by the FCR UAV on propulsion, without compromising in practice the quality of service offered by the flying network. The EREP algorithm is evaluated using simulations. The obtained results show gains up to 26% in the FCR UAV endurance for negligible throughput and delay degradation.