T he pu r p o s e of t h i s s t ud y wa s t o p e r for m a de t a i l e d k i ne mat i c , k i ne t i c , a ndelectromyographic comparison of maximal effort horizontal and vertical jumping. It was of particular interest to identify factors responsible for the control of jump direction. Eight male subjects performed maximal horizontal jumps (HJ) and vertical jumps (VJ) from a standing posture with a counter movement. Three-dimensional motion of the trunk, pelvis, and bilateral thigh, shank, and foot segments were recorded together with bilateral ground reaction forces and electromyographic (EMG) activity from seven right leg muscles. Relative to the VJ, the trunk is displaced further forward at the beginning of the HJ, through greater ankle joint dorsiflexion and knee extension. The activity of the biarticular rectus femoris and hamstrings were adapted to jump direction and helped to tune the hip and knee joint torques to the requirements of the task. The primary difference in joint torques between the two jumps was for the knee joint, with the extension moment reduced in the HJ, consistent with differences in activation levels of the biarticular rectus femoris and hamstrings. Activity of the mono-articular knee extensors was adapted to jump direction in terms of timing rather than peak amplitude. Overall results of this study suggest that jump direction is controlled by a combination of trunk orientation at the beginning of the push-off and the relative activation levels of the biarticular rectus femoris and hamstring muscles during the push-off. simulation model that realistic horizontal jumps may be achieved using the muscle stimulation patterns from a vertical jump by simply rotating the body mass forward in relation to the base of support prior to extending the legs. The authors referred to this as a rotation-extension strategy. Results suggested that the required adaptations to the net joint moments that occur when jumping forward compared to upward can be produced by intrinsic muscle properties alone (ie. stiffness and damping). This simplifies the neural control of tasks such as jumping because the same muscle stimulation is effective, although not optimal, for a range of jump directions.In a comparison of countermovement jumps performed in different directions, Jones and Caldwell (2003) explored hypotheses concerning the role of mono-articular and bi-articular muscles. It was hypothesized that bi-articular muscle activity would be modulated to control the direction of the ground reaction force for jumps in different directions, whereas mono-articular muscle activity would not be affected by jump direction. These hypotheses are based on the idea that bi-articular muscles are activated to tune the distribution of moments amongst joints in order to meet task requirements (Jacobs and Ingen Schenau, 1992), whereas mono-articular muscles are activated when they can contribute positive work at the joint they span (Jacobs, Bobbert & van Ingen Schenau, 1993). While Jones and Caldwell (2003) showed activity of ...