In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic energy to the enhancement of performance in CMJ compared with SJ. Six male volleyball players performed CMJ and SJ. Kinematics, kinetics, and muscle electrical activity (EMG) from six muscles of the lower extremity were monitored. It was found that even when the body position at the start of push-off was the same in SJ as in CMJ, jump height was on average 3.4 cm greater in CMJ. The possibility that nonoptimal coordination in SJ explained the difference in jump height was ruled out: there were no signs of movement disintegration in SJ, and toe-off position was the same in SJ as in CMJ. The greater jump height in CMJ was attributed to the fact that the countermovement allowed the subjects to attain greater joint moments at the start of push-off. As a consequence, joint moments were greater over the first part of the range of joint extension in CMJ, so that more work could be produced than in SJ. To explain this finding, measured and manipulated kinematics and electromyographic activity were used as input for a model of the musculoskeletal system. According to simulation results, storage and reutilization of elastic energy could be ruled out as explanation for the enhancement of performance in CMJ over that in SJ. The crucial contribution of the countermovement seemed to be that it allowed the muscles to build up a high level of active state (fraction of attached cross-bridges) and force before the start of shortening, so that they were able to produce more work over the first part of their shortening distance.
Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.
Explosive movements such as throwing, kicking, and jumping are characterized by high velocity and short movement time. Due to the fact that latencies of neural feedback loops are long in comparison to movement times, correction of deviations cannot be achieved on the basis of neural feedback. In other words, the control signals must be largely preprogrammed. Furthermore, in many explosive movements the skeletal system is mechanically analogous to an inverted pendulum; in such a system, disturbances tend to be amplified as time proceeds. It is difficult to understand how an inverted-pendulum-like system can be controlled on the basis of some form of open loop control (albeit during a finite period of time only). To investigate if actuator properties, specifically the force-length-velocity relationship of muscle, reduce the control problem associated with explosive movement tasks such as human vertical jumping, a direct dynamics modeling and simulation approach was adopted. In order to identify the role of muscle properties, two types of open loop control signals were applied: STIM(t), representing the stimulation of muscles, and MOM(t), representing net joint movements. In case of STIM control, muscle properties influence the joint moments exerted on the skeleton; in case of MOM control, these moments are directly prescribed. By applying perturbations and comparing the deviations from a reference movement for both types of control, the reduction of the effect of disturbances due to muscle properties was calculated. It was found that the system is very sensitive to perturbations in case of MOM control; the sensitivity to perturbations is markedly less in case of STIM control. It was concluded that muscle properties constitute a peripheral feedback system that has the advantage of zero time delay. This feedback system reduces the effect of perturbations during human vertical jumping to such a degree that when perturbations are not too large, the task may be performed successfully without any adaptation of the muscle stimulation pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.