In order to reduce stimulation costs, most conventional methods incorporate hydraulic fracturing of multiple perf clusters over multiple stages to treat large segments of shale rock in horizontally completed laterals. Under ideal situations, this technique would create equally-stimulated fractures at each perf cluster. However, in practice, such treatments can create overstimulation in some perf clusters and under-stimulation in others with unknown stimulated lengths and volumes. As operators move towards increased number of stages, increasingly larger number of plugs cause additional wireline trips and associated plug drilling time, which increases the total cost and mechanical risk of the completion. In some fields, operators use combinations of ball actuated sleeves and plug-and-perf methods due to technical limitations in drilling out of all the frac plugs. In response to these practical issues, ExxonMobil has implemented its proprietary Just-In-Time Perforating (JITP) technique in multiple horizontal wells over the last year. Prior to this deployment effort, JITP had been extensively used in vertical and S-shaped wells in the Piceance basin, Colorado.
This paper discusses the learnings obtained after one year of multi-stage fracturing using horizontal JITP in unconventional plays. JITP creates multiple single-zone fracture stimulations on a single wireline run using ball-sealer diversion and perforating guns that remain downhole during fracturing. With the unique granularity of single-zone fracturing, much has been learned about the shale and treatment design. Better placement control can be useful in avoiding fracturing into offset wellbores. Field applications have confirmed the use of less horsepower, fewer frac plugs, improved fracture placement control, and added flexibility in water management. This paper also reviews technical considerations for other completion designs and fluid systems as well as opportunities for enhanced operations based on recent field learnings.