Downhole conditions of oil and gas reservoirs change with time. Monitoring this change is critical to enhance hydrocarbon recovery from the reservoir. Conventionally, downhole measurements of physical and chemical properties of downhole formation fluids are taken using wireline logging or using permanent downhole sensors. Wireline logging is a complex operation that requires several miles of wireline cable, a winch, a crane and a specialized crew that knows how to operate this equipment [1]. In addition, a blowout preventer, a lubricator and a specialized crew to install and operate are needed. The complexity and cost of wireline operations makes it difficult to acquire reservoir data frequently. The other alternative for gathering downhole data more frequently is installing permanent sensors or optical fibers in the well [2-3]. However, due to the harsh downhole conditions, these sensors need to be extremely reliable and continuously maintained. Moreover, surface data acquisition systems for these sensors increase their cost significantly and reduces their applicability to every well. Both methods have their own limitations and there is a need for more practical and less expensive oil field instruments for well logging. Engineering small, inexpensive and robust logging instruments has its own challenges. Solving these challenges has been the main focus area of Sensors Development Team at Aramco Research Center in Houston. This paper describes one of the concept ideas that was successfully engineered and tested in our facility and successfully deployed and retrieved in the field in Saudi Arabia in collaboration with our EXPEC ARC and Northern Area Production Engineering and Well Services Divisions in Saudi Arabia.
Polymer degradation during Enhanced Oil Recovery (EOR) can have large impact on recovery rates during polymer flooding. In the field, few practical solutions exist to perform quality control/assurance (QA/QC) on EOR polymer fluids at surface and no solutions exist for measurements downhole. Here, we present the development of a miniaturized sensor that can be used to detect the onset of polymer degradation by measuring the viscous properties of EOR polymer fluids. The device was tested on samples collected from a polymer flooding operation. We describe its integration into wellsite portable systems and into an untethered logging tool for cost-effective routine measurements downhole. The sensors are based on millimeter-sized piezoelectric tuning fork resonators. The viscosity and density of the fluids was measured from the energy dissipation and the resonant frequency obtained from their vibrational spectra. The devices were specially designed for use in high-salinity polymer fluids. They were tested and validated on samples collected from a single well polymer flood trial. A miniaturized electrical measurement platform was then designed for use at surface in the field and for use in a compact untethered logging tool for quick and inexpensive deployment downhole. The devices were initially calibrated in the laboratory and then tested on samples collected from the field. These two field-collected solutions were used to preflush the formation before injecting surfactant-polymer solution and as a polymer taper to drive the injected surfactant-polymer solution, respectively. The obtained viscosity values correlated very well with those obtained from standard laboratory measurements. Therefore, the changes in viscosity due to reduction in the molecular weight of the polymer, as measured with the miniature devices, can be used to assess whether degradation has taken place. A miniaturized electrical measurement platform was then tested in comparable polymer fluids for use in the field and obtained comparable results. The platforms described here provide a simple, cost-effective, and user-friendly platform for the detection of polymer degradation in the field, thus providing valuable information in real-time during costly polymer flooding operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.