2005
DOI: 10.1016/j.jfa.2005.03.022
|View full text |Cite
|
Sign up to set email alerts
|

k-Hyponormality of multivariable weighted shifts

Abstract: We characterize joint k-hyponormality for 2-variable weighted shifts. Using this characterization we construct a family of examples which establishes and illustrates the gap between k-hyponormality and (k + 1)-hyponormality for each k 1. As a consequence, we obtain an abstract solution to the Lifting Problem for Commuting Subnormals.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
54
0
3

Year Published

2006
2006
2019
2019

Publication Types

Select...
8
1

Relationship

5
4

Authors

Journals

citations
Cited by 49 publications
(57 citation statements)
references
References 17 publications
0
54
0
3
Order By: Relevance
“…Our method is some different from [5,8], where it is the first time in the literatures to construct such type of examples. …”
Section: Some Applicationsmentioning
confidence: 99%
“…Our method is some different from [5,8], where it is the first time in the literatures to construct such type of examples. …”
Section: Some Applicationsmentioning
confidence: 99%
“…Nous avons fait cela en considérant des shifts pondérés commutants en deux variables, pour lesquels nous avons développé de nouvelles techniques pour détecter leur hyponormalité et sousnormalité.À l'intérieur de la classe H 0 de shifts pondérés de 2-variables T ≡ (T 1 , T 2 ) possédant des composants sousnormaux T 1 et T 2 , nous avons obtenu dans [12] une nouvelle condition nécessaire pour l'existence d'un relèvement: les mesures de Berger des sections horizontales et verticales doiventêtre ordonnées de façon linéaire par rapportà la continuité absolue. Plus récemment, dans [5] nous avons donné une solution abstraite du PRSC, après avoir démontré une version multivariée du critère de Bram-Halmos [1].…”
Section: Version Française Abrégéeunclassified
“…Within the class H 0 of 2-variable weighted shifts T ≡ (T 1 , T 2 ) with commuting subnormal components T 1 and T 2 , we obtained in [12] a new necessary condition for the existence of a lifting: the Berger measures of horizontal and vertical slices must be linearly ordered with respect to absolute continuity. More recently, we gave in [5] an abstract solution of LPCS, after proving a multivariable version of the Bram-Halmos Criterion [1].…”
Section: Introductionmentioning
confidence: 99%
“…In [10], they proved that every 2-hyponormal trigonometric Toeplitz operator is necessarily subnormal. An abstract solution to the lifting problem for commuting subnormal operators is obtained in [9] via k-hyponormality of multivariable weighted shifts. In [17] and [18] they show that strong k-hyponormality of a cyclic subnormal operator can be applied to a truncated complex moment problem by studying the flatness of moment matrices that was introduced in [8].…”
Section: Introductionmentioning
confidence: 99%