Adsorption of cationic 1-hexadecylpyridinium bromide (HDPB) and non-ionic p-(1,1,3,3-tetramethylbutyl)-phenoxypolyoxyethylene glycols surfactants of the Triton X series (Triton X-45, Triton X-100 and Triton X-305) from their single and mixed aqueous solutions at thermally graphitized carbon black (CB) was studied. It was shown that the adsorption of the non-ionic surfactant from its individual solution decreased when a number of ethylene oxide units in the surfactant molecule increased. Addition of the non-ionic surfactants increased the amount of HDPB adsorbed from HDPB/Triton X mixtures. At low solution concentrations it was found that in HDPB/Triton X mixtures, the experimental values of total surfactants adsorption are higher than the adsorption values calculated for the ideal surfactant mixtures. The composition of the mixed HDPB/Triton X adsorption layer and the parameters of the intermolecular interaction (β s), between the components in this layer, were calculated using the Rubingh-Rosen approach. It was shown that β s parameters have negative values, which indicate notable interactions between Triton X molecules and HDPB ions in the mixed adsorption layer. It was found that the composition of the mixed adsorption layer at CB surface is notably different from the surfactants composition in the bulk solution. The mixed HDPB/Triton X adsorption layer is enriched with Triton X surfactant and the mole fraction of Triton X increases with decreasing of ethoxylation degree of its molecules.