The navigation of mobile robots is a key element of autonomous systems, which allows robots to move effectively and securely in changing environments with greater autonomy and precision. This study aims to provide researchers with a comprehensive guide for selecting the best path-planning methods for their particular projects. We evaluate some popular algorithms that are regularly used in mobile robot navigation, in order to demonstrate their specifications and determine where they are most effective. For example, one algorithm is used to model the problem as a standard graph, and another algorithm is found to be the most suitable for highly dynamic and highly dimensional environments, due to its robust path-planning capabilities and efficient route construction. We also filter high-performance algorithms in terms of computational complexity, accuracy, and robustness. In conclusion, this study provides valuable information on its individual strengths and weaknesses, helping robotics and engineers make informed decisions when selecting the most appropriate algorithm for their specific applications.