2011 Frontiers of Information Technology 2011
DOI: 10.1109/fit.2011.40
|View full text |Cite
|
Sign up to set email alerts
|

Kalman Filter Based State Estimation for Linearized Twin Rotor System

Abstract: In this paper, states estimation for MIMO TwinRotor System (TRS) is performed. In practical, often, system states are unknown or immeasurable. In applications like state feedback control design, fault diagnostics or system monitoring, the states information is needed. The precise estimation of states can be done and verified using Kalman filter as state observer. For generation and confirmation of correct states estimate, DC inputs (resembling practical inputs) are developed and outputs from TRS model are coll… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
2
1

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 14 publications
0
1
0
1
Order By: Relevance
“…However, a drawback of this approach is that it requires process inputs to be persistently exciting. This constraint is inadequate for ill conditioned multivariable processes because in this case model order can be underestimated, leading to subsequent identification of poor models (Misra and Nikolaou, 2003;Haider et al, 2011;Musoff and Zarchan, 2009;DeBitetto, 1989;Ehrman and Lanterman, 2008;Palmer et al, 1996;Woo-han et al, 2006;Armenta et al, 2017;Chandra et al, 2018).…”
Section: Introductionmentioning
confidence: 99%
“…However, a drawback of this approach is that it requires process inputs to be persistently exciting. This constraint is inadequate for ill conditioned multivariable processes because in this case model order can be underestimated, leading to subsequent identification of poor models (Misra and Nikolaou, 2003;Haider et al, 2011;Musoff and Zarchan, 2009;DeBitetto, 1989;Ehrman and Lanterman, 2008;Palmer et al, 1996;Woo-han et al, 2006;Armenta et al, 2017;Chandra et al, 2018).…”
Section: Introductionmentioning
confidence: 99%
“…El trabajo realizado en [21] analiza el comportamiento de dos propuestas de filtro Kalman para estimar los estados de una suspensión convencional, donde la diferencia entre las dos es la inclusión de la señal de perturbación en la superficie de desplazamiento, encontrando que la propuesta sin la señal de perturbación no estima de manera adecuada los estados del sistema, por otra parte la inclusión de dicha información en la segunda propuesta hace que los estados se estimen de manera adecuada. En el desarrollo de este trabajo se realizaron las dos propuestas obteniendo resultados similares, por lo cual se incluyo dentro del diseño del filtro Kalman la señal de perturbación en la superficie de desplazamiento.…”
Section: Señales De Los Sensoresunclassified