Introduction: The underlying causes of stillbirth are heterogeneous and in many cases unexplained. Our aim was to conclude clinical results from karyotype and quantitative fluorescence-polymerase chain reaction (QF-PCR) analysis of all stillbirths occurring in Stockholm County between 2008 and 2012. By screening a subset of cases, we aimed to study the possible benefits of chromosomal microarray (CMA) in the analysis of the etiology of stillbirth. Methods: During 2008-2012, 481 stillbirths in Stockholm County were investigated according to a clinical protocol including karyotype or QF-PCR analysis. CMA screening was performed on a subset of 90 cases, corresponding to all stillbirths from 2010 without a genetic diagnosis. Results: Chromosomal aberrations were detected by karyotype or QF-PCR analysis in 7.5% of the stillbirths. CMA analysis additionally identified two known syndromes, one aberration disrupting a known disease gene, and 26 variants of unknown significance. Furthermore, CMA had a significantly higher success rate than karyotyping (100 vs. 80%, p < 0.001). Discussion: In the analysis of stillbirth, conventional karyotyping is prone to failure, and QF-PCR is a useful complement. We show that CMA has a higher success rate and aberration detection frequency than these methods, and conclude that CMA is a valuable tool for identification of chromosomal aberrations in stillbirth.