Graphical Abstract Highlights d Homozygous UBQLN4 germline mutations lead to a genome instability syndrome d UBQLN4 removes ubiquitylated MRE11 from damaged chromatin to curtail DSB resection d UBQLN4 overexpression represses HRR and promotes the use of NHEJ for DSB repair d UBQLN4 overexpression in tumors promotes PARP1 inhibitor sensitivity SUMMARY Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4overexpressing tumors.of selected pairs defined in a contrast matrix using the R library multcomp. Error bars represent SD of the mean for 3 replicate wells analyzed in one experiment. Each experiment was carried out twice. *p < 0.05. (N) Quantification of the relative comet tail moment (n = 100) derived from the neutral comet assays at the indicated time points. Error bars represent SD of the mean of the relative comet tail moment analyzed in n = 3 experiments.