Dry eye disease (DED), an inflammatory autoimmune disorder affecting the ocular surface, degrades visual performance and the quality of life of >10 million people in the United States alone. The primary limitation in the effective treatment of DED is an incomplete understanding of its specific cellular and molecular pathogenic elements. Using a validated mouse model of DED, herein we functionally characterize the different T cell subsets, including regulatory T cells (Tregs) and pathogenic effector T cells, and determine their contribution to the pathogenesis of DED. Our data demonstrate the presence of dysfunctional Tregs and the resistance of pathogenic T cells, particularly Th17 cells, to Treg suppression in DED. In addition, we clearly show that in vivo blockade of IL-17 significantly reduces the severity and progression of disease, which is paralleled by a reduction in the expansion of Th17 cells and restoration of Treg function. Our findings elucidate involvement of a previously unknown pathogenic T cell subset (Th17) in DED that is associated specifically with Treg dysfunction and disease pathogenesis and suggest a new target for dry eye therapy.