Silicon photonics holds significant promise in revolutionizing optical interconnects in data centers and high performance computers to enable scaling into the Pb/s package escape bandwidth regime while consuming orders of magnitude less energy per bit than current solutions. In this work, we review recent progress in silicon photonic interconnects leveraging chipscale Kerr frequency comb sources and provide a comprehensive overview of massively scalable silicon photonic systems capable of capitalizing on the large number of wavelengths provided by such combs. We first consider the high-level architectural constraints and then proceed to detail the corresponding fundamental device designs supported by both simulated and experimental results. Furthermore, the majority of experimentally measured devices were fabricated in a commercial 300 mm foundry, showing a clear path to volume manufacturing. Finally, we present various system-level experiments which illustrate successful proof-ofprinciple operation, including flip-chip integration with a codesigned CMOS application-specific integrated circuit (ASIC) to realize a complete Kerr comb-driven electronic-photonic engine. These results provide a viable and appealing path towards future co-packaged silicon photonic interconnects with aggregate perfiber bandwidth above 1 Tb/s, energy consumption below 1 pJ/bit, and areal bandwidth density greater than 5 Tb/s/mm 2 .