Abstract-In many Wireless Sensor Networks (WSNs), providing end to end secure communications between sensors and the sink is important for secure network management. While there have been many works devoted to hop by hop secure communications, the issue of end to end secure communications is largely ignored. In this paper, we design an end to end secure communication protocol in randomly deployed WSNs. Specifically, our protocol is based on a methodology called differentiated key pre-distribution. The core idea is to distribute different number of keys to different sensors to enhance the resilience of certain links. This feature is leveraged during routing, where nodes route through those links with higher resilience. Using rigorous theoretical analysis, we derive an expression for the quality of end to end secure communications, and use it to determine optimum protocol parameters. Extensive performance evaluation illustrates that our solutions can provide highly secure communications between sensor nodes and the sink in randomly deployed WSNs. We also provide detailed discussion on a potential attack (i.e. biased node capturing attack) to our solutions, and propose several countermeasures to this attack.