Experimental section, discussion on high current density and heat rejection limit, and physical and electrochemical properties of different carbon supports (PDF)
The oxygen reduction reaction (ORR) kinetics of a high-surface-area carbon-supported platinum catalyst (Pt∕C) were measured in an operating proton exchange membrane fuel cell (PEMFC). The ORR kinetics of Pt∕C can be described over a wide range of temperature, pressure, and current density using four catalyst-specific parameters: transfer coefficient, exchange current density, reaction order with respect to oxygen partial pressure, and activation energy. These parameters were extracted using a combined kinetic and thermodynamic model, either referenced to the reversible cell potential (i.e., using exchange current density as activity parameter) or referenced to a constant ohmic-resistance-corrected (i.e., iR-free) cell voltage. The latter has the advantage of using an activity parameter (activity at 0.9V iR-free cell voltage) which can be measured explicitly without extrapolation, in contrast to the exchange current density required in the former model. It was found that much of the variation in the published values for these catalyst-specific kinetic parameters derives from applying the same parameter name (e.g., activation energy) without specifying which of its many possible definitions is being used. The obviously significant numerical differences both for “oxygen reaction order” and for “activation energy” due to different definitions (often tacitly assumed and rarely explicitly stated in the literature) are illustrated by the kinetic ORR parameters which we determined for Pt∕C : (i) at zero overpotential, where reaction order and activation energy are ∼0.5 and 67kJ∕mol , respectively, and (ii) at 0.9V iR-free cell voltage, where reaction order and activation energy are ∼0.75 and 10kJ∕mol , respectively.
The exchange current density for the hydrogen oxidation/evolution reactions was determined in a proton exchange membrane fuel cell. Ultralow Pt-loaded electrodes ͑0.003 mg Pt /cm 2 ͒ were used to obtain measurable kinetic overpotential signals ͑50 mV at 2 A/cm 2 ͒. Using a simple Butler-Volmer equation, the exchange current density and transfer coefficient were determined to lie within the range of 235-600 mA/cm Pt 2 and 0.5-1, respectively. Due to the fast kinetics, no measurable voltage losses are predicted for pure-H 2 /air proton exchange membrane fuel cell applications when lowering the anode Pt loadings from its current value of 0.4 mg Pt /cm 2 to the automotive target of 0.05 mg Pt /cm 2 .
Polymer-electrolyte fuel cells are a promising energy-conversion technology. Over the last several decades significant progress has been made in increasing their performance and durability, of which continuum-level modeling of the transport processes has played an integral part. In this review, we examine the state-of-the-art modeling approaches, with a goal of elucidating the knowledge gaps and needs going forward in the field. In particular, the focus is on multiphase flow, especially in terms of understanding interactions at interfaces, and catalyst layers with a focus on the impacts of ionomer thin-films and multiscale phenomena. Overall, we highlight where there is consensus in terms of modeling approaches as well as opportunities for further improvement and clarification, including identification of several critical areas for future research. Fuel cells may become the energy-delivery devices of the 21 st century. Although there are many types of fuel cells, polymer-electrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, fuel and oxygen are combined electrochemically. If hydrogen is used as the fuel, it oxidizes at the anode releasing proton and electrons according toThe generated protons are transported across the membrane and the electrons across the external circuit. At the cathode catalyst layer, protons and electrons recombine with oxygen to generate waterAlthough the above electrode reactions are written in single step, multiple elementary reaction pathways are possible at each electrode. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. * Electrochemical Society Active Member. z E-mail: azweber@lbl.govOver the last several decades significant progress has been made in increasing PEFC performance and durability. Such progress has been enabled by experiments and computation at multiple scales, with the bulk of the focus being on optimizing and discovering new materials for the membrane-electrode-assembly (MEA), composed of the proton-exchange membrane (PEM), catalyst layers, and diffusionmedia (DM) backing layers. In particular, continuum modeling has been invaluable in providing understanding and insight into processes and phenomena that cannot be resolved or uncoupled through experiments. While modeling of the transport and related phenomena has progressed greatly, there are still some critical areas that need attention. These areas include modeling the catalyst layer and multiphase phenomena in the PEFC porous media.While there have been various reviews over the years of PEFC modeling 1-7 and issues, [8][9][10][11][12][13][14] as well as numerous books and book chapters, there is a need to examine critically the field in terms of what has been done and what needs to be done. This review serves that purpose with a focus on transport modeling of PEFCs. This is not meant to be an exhaustive review...
Reducing Pt in proton exchange membrane fuel cells is the subject of intense research and development. Recently, researchers have observed significant performance loss due to a transport limitation at the Pt surface. This is investigated here with loading studies that fix electrode thickness and bulk properties. Within these layers, the impact of Pt dispersion is probed by varying the wt% of Pt/C while holding Pt loading and electrode thickness constant by diluting with carbon, effectively varying the average distance between Pt particles while maintaining gas phase loss in the catalyst layer. Results elucidate how the electrode structure impacts local transport loss. It is demonstrated that local transport loss is not fully captured with a normalized Pt area. Additional geometric considerations that account for ionomer surface area relative to the Pt particles are required to resolve performance loss at low Pt loading as electrode structure varies. Furthermore, within this ionomer layer an interfacial resistance at both the gas and Pt interfaces are necessary to account for performance trends observed. These results demonstrate that residual performance loss associated with low cathode Pt loading can be mitigated by electrode design, where oxygen flux through the gas/ionomer interface to the Pt surface is minimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.