Polymer-electrolyte fuel cells are a promising energy-conversion technology. Over the last several decades significant progress has been made in increasing their performance and durability, of which continuum-level modeling of the transport processes has played an integral part. In this review, we examine the state-of-the-art modeling approaches, with a goal of elucidating the knowledge gaps and needs going forward in the field. In particular, the focus is on multiphase flow, especially in terms of understanding interactions at interfaces, and catalyst layers with a focus on the impacts of ionomer thin-films and multiscale phenomena. Overall, we highlight where there is consensus in terms of modeling approaches as well as opportunities for further improvement and clarification, including identification of several critical areas for future research. Fuel cells may become the energy-delivery devices of the 21 st century. Although there are many types of fuel cells, polymer-electrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, fuel and oxygen are combined electrochemically. If hydrogen is used as the fuel, it oxidizes at the anode releasing proton and electrons according toThe generated protons are transported across the membrane and the electrons across the external circuit. At the cathode catalyst layer, protons and electrons recombine with oxygen to generate waterAlthough the above electrode reactions are written in single step, multiple elementary reaction pathways are possible at each electrode. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. * Electrochemical Society Active Member. z E-mail: azweber@lbl.govOver the last several decades significant progress has been made in increasing PEFC performance and durability. Such progress has been enabled by experiments and computation at multiple scales, with the bulk of the focus being on optimizing and discovering new materials for the membrane-electrode-assembly (MEA), composed of the proton-exchange membrane (PEM), catalyst layers, and diffusionmedia (DM) backing layers. In particular, continuum modeling has been invaluable in providing understanding and insight into processes and phenomena that cannot be resolved or uncoupled through experiments. While modeling of the transport and related phenomena has progressed greatly, there are still some critical areas that need attention. These areas include modeling the catalyst layer and multiphase phenomena in the PEFC porous media.While there have been various reviews over the years of PEFC modeling 1-7 and issues, [8][9][10][11][12][13][14] as well as numerous books and book chapters, there is a need to examine critically the field in terms of what has been done and what needs to be done. This review serves that purpose with a focus on transport modeling of PEFCs. This is not meant to be an exhaustive review...
Reducing Pt in proton exchange membrane fuel cells is the subject of intense research and development. Recently, researchers have observed significant performance loss due to a transport limitation at the Pt surface. This is investigated here with loading studies that fix electrode thickness and bulk properties. Within these layers, the impact of Pt dispersion is probed by varying the wt% of Pt/C while holding Pt loading and electrode thickness constant by diluting with carbon, effectively varying the average distance between Pt particles while maintaining gas phase loss in the catalyst layer. Results elucidate how the electrode structure impacts local transport loss. It is demonstrated that local transport loss is not fully captured with a normalized Pt area. Additional geometric considerations that account for ionomer surface area relative to the Pt particles are required to resolve performance loss at low Pt loading as electrode structure varies. Furthermore, within this ionomer layer an interfacial resistance at both the gas and Pt interfaces are necessary to account for performance trends observed. These results demonstrate that residual performance loss associated with low cathode Pt loading can be mitigated by electrode design, where oxygen flux through the gas/ionomer interface to the Pt surface is minimized.
Understanding how water produced in the cathode catalyst layer is removed during proton exchange membrane fuel cell (PEMFC) operation is critical for optimization of materials and model development. The present work combines in situ and ex situ experiments designed to elucidate the dominant water discharge mechanism when considering capillary and vapor transport at normal PEMFC operating conditions. The flux of water vapor driven by the thermal gradient in the cathode diffusion layer can alone be sufficient to remove product water at high current densities even with saturated gas in the delivery channels. The role of an intermediate microporous layer and its impact in vapor vs liquid transport is also considered. We propose that the primary role of the microporous layer is to prevent condensed water from accumulating on and blocking oxygen access to the cathode catalyst layer.
The total accumulated charge collected from test points b-i can be viewed as Supplemental Figure 1. As such, the charge per unit area in test point b represents only the charge collected at b; each successive test point contains the sum of charge collected at all previous test points in addition to the current test point.Supporting Figure 1: Charge Accumulation as a function of test point. Ex Situ Characterization of the SEI Layer: Sample PreparationUpon completion of in situ testing and associated radiation screening (approximately 60 days after NR experiments), cells were disassembled in a glovebox with atmospheric specifications as stated in the methods section. The working electrodes with SEI were rinsed with diethyl carbonate, DEC, and dried.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.