In this comprehensive review, recent progress and developments on perfluorinated sulfonic-acid (PFSA) membranes have been summarized on many key topics. Although quite well investigated for decades, PFSA ionomers' complex behavior, along with their key role in many emerging technologies, have presented significant scientific challenges but also helped create a unique cross-disciplinary research field to overcome such challenges. Research and progress on PFSAs, especially when considered with their applications, are at the forefront of bridging electrochemistry and polymer (physics), which have also opened up development of state-of-the-art in situ characterization techniques as well as multiphysics computation models. Topics reviewed stem from correlating the various physical (e.g., mechanical) and transport properties with morphology and structure across time and length scales. In addition, topics of recent interest such as structure/transport correlations and modeling, composite PFSA membranes, degradation phenomena, and PFSA thin films are presented. Throughout, the impact of PFSA chemistry and side-chain is also discussed to present a broader perspective.
Polymer-electrolyte fuel cells are a promising energy-conversion technology. Over the last several decades significant progress has been made in increasing their performance and durability, of which continuum-level modeling of the transport processes has played an integral part. In this review, we examine the state-of-the-art modeling approaches, with a goal of elucidating the knowledge gaps and needs going forward in the field. In particular, the focus is on multiphase flow, especially in terms of understanding interactions at interfaces, and catalyst layers with a focus on the impacts of ionomer thin-films and multiscale phenomena. Overall, we highlight where there is consensus in terms of modeling approaches as well as opportunities for further improvement and clarification, including identification of several critical areas for future research. Fuel cells may become the energy-delivery devices of the 21 st century. Although there are many types of fuel cells, polymer-electrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, fuel and oxygen are combined electrochemically. If hydrogen is used as the fuel, it oxidizes at the anode releasing proton and electrons according toThe generated protons are transported across the membrane and the electrons across the external circuit. At the cathode catalyst layer, protons and electrons recombine with oxygen to generate waterAlthough the above electrode reactions are written in single step, multiple elementary reaction pathways are possible at each electrode. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. * Electrochemical Society Active Member. z E-mail: azweber@lbl.govOver the last several decades significant progress has been made in increasing PEFC performance and durability. Such progress has been enabled by experiments and computation at multiple scales, with the bulk of the focus being on optimizing and discovering new materials for the membrane-electrode-assembly (MEA), composed of the proton-exchange membrane (PEM), catalyst layers, and diffusionmedia (DM) backing layers. In particular, continuum modeling has been invaluable in providing understanding and insight into processes and phenomena that cannot be resolved or uncoupled through experiments. While modeling of the transport and related phenomena has progressed greatly, there are still some critical areas that need attention. These areas include modeling the catalyst layer and multiphase phenomena in the PEFC porous media.While there have been various reviews over the years of PEFC modeling 1-7 and issues, [8][9][10][11][12][13][14] as well as numerous books and book chapters, there is a need to examine critically the field in terms of what has been done and what needs to be done. This review serves that purpose with a focus on transport modeling of PEFCs. This is not meant to be an exhaustive review...
Thin films of ion‐conducting polymers are an important area of study due to their function in many electrochemical devices and as analogues for interfacial phenomena that occur in bulk films. In this paper, the properties of Nafion, a prototypical ionomer, are investigated as thin films (4 to 300 nm) on carbon, gold, and platinum substrates that are fabricated using different casting methods and thermal histories. Specifically, water uptake, swelling, and morphology are investigated by quartz‐crystal microbalance, ellipsometry, and grazing‐incidence X‐ray scattering to develop structure/property/processing relationships. For all substrates, as the films' thickness decreased, there is an initial decrease in swelling followed by a subsequent increase for film thicknesses below ≈20 nm due to a disordering of the film hydrophilic/hydrophobic structure. Decreased swelling and less structural order is observed on gold for spin‐cast films compared to self‐assembled films; the opposite effect is observed for films on carbon. The presented systematic data set and analyses represent a thorough study of the behavior of Nafion thin films on model substrates of interest in metal catalyst/carbon electrodes, and these insights help to elucidate the underlying polymer physics and confinement effects in these and related systems.
Perfluorinated sulfonic acid (PFSA) ionomers are the most widely used solid electrolyte in electrochemical technologies due to their remarkable ionic conductivity with simultanous mechanical stability, imparted by their phase‐separated morphology. In this work, the morphology and swelling of PFSA ionomers (Nafion and 3M) as bulk membranes (>10 μm) and dispersion‐cast thin films (<100 nm) are investigated to identify the roles of equivalent weight (EW) and side‐chain length across lengthscales. Humidity‐dependent structural changes as well as different PFSA chemistries are explored in the thin‐film regime, allowing for the development of thickness‐EW phase diagrams. The ratio of macroscopic (thickness) to nanoscopic (domain spacing) swelling during hydration is found to be affine (1:1) in thin films, but increases as the thickness approaches bulk values, revealing the existence of a mesoscale organization governing the multiscale swelling in PFSAs. Ionomer chemistry, in particular EW, is found to play a key role in altering the confinement‐driven structural changes, including thin‐film anisotropy, with phase separation becoming weaker as the film thickness is reduced below 25 nm or as EW is increased. For the lower‐EW 3M PFSA ionomers, confinement appears to induce even stronger phase separation accompanied by domain alignment parallel to the substrate.
Electrochemical reduction of CO using renewable sources of electrical energy holds promise for converting CO to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction. Moreover, cathode polarization can influence the kinetics of CO reduction. Here, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO that is consistent with experiments. Simulations based on this mechanism also describe the dependence of the H and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.